Линейчатая геометрия - Definition. Was ist Линейчатая геометрия
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Линейчатая геометрия - definition

Плосконосый (геометрия); Отсечение углов (геометрия); Обрезок (геометрия)
  • Плосконосый куб]] можно построить путём преобразования [[ромбокубооктаэдр]]а с помощью вращения 6 синих квадратных граней пока 12 белых квадрата не станут парами равносторонних треугольников.
  • 160px
  • 60px
  • 60px
  • 60px
  • 100px
  • 100px
  • 100px
  • 100px
  • 60px
  • 60px
  • 100px
  • 60px
  • snub 24-cell}}
  • 100px
  • 100px
  • 100px
  • 50px
  • 100px
  • 100px
  • 80px
  • 80px
  • Две хиральные копии плосконосого куба как альтернирование (красных и зелёных) вершин усечённого кубооктаэдра.
  • 160px
  • 60px
  • 100px
  • 60px
  • 40px
  • 40px
  • 50px
  • 60px
  • 120px
  • 100px
  • 50px
  • 60px
  • 60px
  • 40px
  • 50px
  • 50px
  • 50px
  • 50px
  • 40px
  • 50px
  • 120px
  • 100px
  • 60px
  • 40px
  • 40px
  • 60px
  • 100px
  • 60px
  • 40px
  • 40px
  • 60px
  • 60px
  • 50px
  • 100px
  • 60px
  • 40px
  • 50px
  • 40px
  • 50px
  • 60px
  • 60px
  • 100px
  • 60px
  • 40px
  • 40px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px

Линейчатая геометрия      

раздел геометрии, в котором рассматриваются в качестве элементов пространства прямые линии. Как известно, прямая в пространстве определяется четырьмя постоянными - коэффициентами а, b, р, q в уравнениях х = az + р, у = bz + q. Следовательно, величины а, b, р, q можно рассматривать как координаты прямой. Если эти координаты являются функциями одного, двух или трёх параметров, то соответствующие совокупности прямых образуют линейчатые поверхности (См. Линейчатая поверхность) и т. н. конгруэнции и комплексы прямых. Эти геометрические образы и являются объектом изучения Л. г. Примером линейчатой поверхности может служить однополостный гиперболоид, примером конгруэнции - совокупность общих касательных к двум каким-либо поверхностям, примером комплекса прямых - совокупность касательных к одной какой-либо поверхности.

Для изучения линейчатых поверхностей, конгруэнций и комплексов прямых с единой точки зрения в Л. г. вводятся так называемые линейные однородные координаты прямой. Пусть заданы две точки M1(x1, y1, z1) и M2(x2, y2, z2), тогда линейными однородными координатами прямой, проходящей через эти точки, называют шесть чисел, пропорциональных (или равных) числам:

ξ1= x1 - x2, ξ2 = y1 - y2, ξ3 = z1 - z2, ξ4 = y1z2 - y2z1, ξ5 = x2z1 - x1z2, ξ6 = x1y2 - x2y1.

Числа ξ1, ξ2, ξ3 являются компонентами вектора , а ξ4, ξ5, ξ6 - компоненты момента этого вектора относительно начала координат. Легко проверить, что числа ξi удовлетворяют соотношению

ξ1ξ4 + ξ2ξ5 + ξ3ξ6 = 0. (1)

Таким образом, каждой прямой соответствуют шесть определяемых с точностью до постоянного множителя чисел ξi, удовлетворяющих соотношению (1), и обратно, числа ξi (не все равные нулю), связанные условием (1), определяют единственным образом некоторую прямую (как её координаты в указанном выше смысле). Одно однородное линейное уравнение

(2)

определяет линейный комплекс - совокупность прямых, заполняющих пространство так, что через каждую точку пространства проходит пучок прямых, лежащих в одной плоскости. Таким образом, каждой точке ("полюсу") пространства можно поставить в соответствие плоскость ("полярную плоскость"), содержащую все прямые комплекса, проходящую через эту точку. Это соответствие называют нулевой системой; оно аналогично соответствию полюсов и полярных плоскостей поверхности 2-го порядка. Если полярные плоскости всех точек пространства проходят через одну прямую (ось), то комплекс состоит из всех прямых, пересекающих ось; его называют специальным линейным комплексом. В этом случае коэффициенты уравнения (2) удовлетворяют условию

a1a4 + a2a5 + a3a6 = 0.

Система двух однородных линейных уравнений вида (2) определяет линейную конгруэнцию - совокупность прямых, пересекающих две данные прямые (которые могут быть и мнимыми). Три однородных линейных уравнения определяют линейчатую поверхность, являющуюся в этом случае либо однополостным гиперболоидом, либо гиперболическим параболоидом.

Линейные однородные координаты прямой были введены Ю. Плюккером в 1846. Он же подробно изучил теорию линейного комплекса. В дальнейшем Л. г. разрабатывалась в работах Ф. Клейна и русского математика А. П. Котельникова. Дифференциальная геометрия конгруэнций, начатая Э. Куммером в 1860, получила большое развитие в трудах итальянских математиков Л. Бианки, Г. Санниа и французского математика А. Рибокура. На основе созданного в 1895 Котельниковым "винтового" исчисления советским математиком Д. Н. Зейлигером развита теория линейчатых поверхностей и конгруэнций. Проективная теория конгруэнций построена в 1927 советским математиком С. П. Финиковым.

Лит.: Зейлигер Д. Н., Комплексная линейчатая геометрия. Поверхности и конгруэнции, Л. - М., 1934; Фиников С. П., Теория поверхностей, М. - Л., 1934; его же, Проективно-дифференциальная геометрия, М. - Л.,1937; его же, Теория конгруэнций, М. - Л., 1950; Каган В. Ф., Основы теории поверхностей в тензорном изложении, ч. 1-2, М. - Л., 1947-48; Клейн Ф., Высшая геометрия, пер. с нем., М. - Л., 1939; Zindler К., Liniengeometrie, Bd 1-2, Lpz., 1902-06.

Э. Г. Позняк.

Жёсткость (геометрия)         
Жёсткость — свойство подмногообразия M в евклидовом пространстве (или, более обще, в пространстве постоянной кривизны), заключающееся в том, что любая его изометрическая вариация (бесконечно малое изгибание) является тривиальной, то есть соответствующее её поле скоростей на M индуцируется полем Киллинга на M. Вопрос о жёсткости подмногообразий — по существу вопрос о единственности решения системы дифференциальных уравнений, являющихся линеаризацией системы уравнений для изометричных изгибаний подмногообразия.
Вычислительная геометрия         
Вычислительная геометрия — раздел информатики, в котором рассматриваются алгоритмы для решения геометрических задач.

Wikipedia

Операция «Snub»

Операция snub или отсечение вершин — это операция, применяемая к многогранникам. Термин появился из названий, данных Кеплером двум архимедовым телам — плосконосый куб (cubus simus) и плосконосый додекаэдр (dodecaedron simum). В общем случае плосконосые формы имеют хиральную симметрию двух видов, с ориентацией по часовой стрелке и против часовой стрелки. Согласно названиям Кеплера, отсечение вершин можно рассматривать как растяжение правильного многогранника, когда исходные грани отодвигаются от центра и поворачиваются относительно центров, вместо исходных вершин добавляются многоугольники с центрами в этих вершинах, а пары треугольников заполняют пространство между исходными рёбрами.

Терминологию обобщил Коксетер со слегка другим определением для более широкого множества однородных многогранников.